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Abstract. We study the phase diagram of the tight-binding model for an electron on an
anisotropic square lattice with a four-dimensional parameter space defined by two nearest-
neighbour and two next-nearest-neighbour couplings. Using a renormalization scheme, we
show that the inequality of the two next-nearest-neighbour couplings destroys the fat critical
regime found in the isotropic case above the bicritical line and replaces it with another re-
entrant extended phase. The scaling properties of the model are those of the corresponding
tight-binding models on the nearest-neighbour square and triangular lattices. The triangular
universality class also describes the quantum Ising chain in a transverse field with the only
exception being the conformally invariant state of the Ising model which has no analogue in the
triangular-lattice case.

1. Introduction

The Harper equation [1] (also known as the almost Mathieu equation [2])

ta(ψk+1 + ψk−1) + 2tb cos[2π(kσ + φ)]ψk = Eψk (1)

describes, in the tight-binding approximation, the two-dimensional nearest-neighbour (NN)
electron gas on the square lattice in a transverse magnetic field. Here,ta and tb are the NN
couplings along thex- and y-directions. This one-dimensional representation of the two-
dimensional problem can be obtained for an electron in a strong (weak) two-dimensional
periodic potential and weak (strong) magnetic field. The parameterσ , which is equal to
the magnetic flux per plaquette in units of the flux quantum, plays an important role in
this problem: ifσ is irrational, the system is quasiperiodic. In particular, for diophantine
σ the model exhibits a metal–insulator transition along one of the directions of the two-
dimensional lattice [2]. For the anisotropic square lattice,ta < tb, states are extended (E)
along they-direction and localized (L) along thex-direction, with the inverse localization
length γ = ln(tb/ta). In the isotropic limit ta = tb, the localization length is infinite in
both directions, and the electron wave functions and the spectrum are multi-fractals. This
exotic behaviour is in between the E- and L-type behaviours and has been called critical
(C). For σ equal to the inverse golden mean, the quantum states as well as the spectrum
exhibit self-similarity. Our recent studies on the Harper equation [3] have shown that such
complexity and richness of the eigenstates is not a property of the C phase only but can be
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found also in the L phase if one studies the fluctuations about the exponentially localized
states. The fractal characteristics of these states are described by a unique strong-coupling
renormalization fixed point. This fixed point is distinct from the critical fixed point of the
Harper equation. The existence of these fixed points implies universality in the sense that
bounded perturbations on the periodic potential are also described by the universality class
of the Harper equation.

In this paper, we study the generalization which results from taking into account both the
NN and next-nearest-neighbour (NNN) interaction in the electron problem. The associated
tight-binding equation (TBE) has the form [4]

ta(ψk+1 + ψk−1) + 2tb cos[2π(kσ + φ)]ψk

+ exp[i 2π(kσ + φ)]{tabeiπσ ψk+1 + tab̄e−iπσ ψk−1}
+ exp[−i 2π(kσ + φ)]{tabeiπσ ψk−1 + tab̄e−iπσ ψk+1} = Eψk (2)

where tab and tab̄ are the diagonal NNN couplings. The Harper equation corresponds to
vanishing of the NNN couplings. Furthermore, in the limittab̄ = 0, the model describes an
electron on the NN triangular lattice.

We would like to emphasize that in this paper we mainly treat equation (2) as a one-
dimensional generalization of the Harper equation which provides us with the possibility of
testing the predictions of the Harper equation in a more general context. In particular, the
phase diagrams that we obtain are for the one-dimensional representation of the problem.
However, the topology of the two-dimensional lattice is reflected in transformations that we
find between eigenfunctions in various regions of the phase diagram.

Figure 1. The phase diagram of equation (2). Forα = β, the region ACE is a critical phase
which includes the lines AC and CE. Forα 6= β, ACE is extended and the critical behaviour
exists only along the lines AC, BC, and CE. Furthermore, the scaling of the fluctuations along
the line CL is different from those of the L regions above and below this line.

Recently, the above model was studied in the isotropic limit wheretab = tab̄ [4, 5, 3].
For ta > 2tab , the phase diagram was described by the universality class of Harper equation.
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However for ta 6 2tab, the behaviour was a lot more complex. One of the novel aspects
of the two-parameter phase diagram (see figure 1) was the existence of a fat critical phase.
Our renormalization scheme showed that the scaling properties of this critical phase were
described by a universal strange attractor of the renormalization group (RG) equations.

The general case of the model wheretab and tab̄ are not equal and the resulting TBE
is complex has not been fully investigated. Using the duality property of the model, Han
et al (see [4]) calculated the Lyapunov exponent of the model analytically in the space of
three parametersλ = tb/ta, α = 2tab/ta andβ = 2tab̄/ta. They concluded that the system
is localized forλ > 1 if (α + β)/2 < 1 and forλ > (α + β)/2 otherwise. Apart from the
existence of the localized phase, nothing has been known about the scaling properties of the
complex model. Most importantly, no previous studies have explained how the fat critical
phase above the bicritical line is affected by taking the two NNN couplings not equal.

In this paper, we study the complex model using our recently developed decimation
scheme. We will confine ourselves to the case whereσ = (

√
5 − 1)/2. It is shown

that the phase diagram changes discontinuously asα − β becomes different from zero.
Furthermore,β turns out to be an irrelevant parameter (forα > β) and hence the phase
diagram can be determined by settingtab̄ equal to zero. The interesting fat C phase of
the case with equal NNN couplings is destroyed and the C–L transition is replaced by
the E–L transition. In order to observe critical features, at least two out of the remaining
three couplingsta, tb, andtab have to be equal and the third one cannot be bigger than the
other two. Our detailed renormalization analysis shows that the universal features of the
phase diagram are characterized by the universality classes of the NN square lattice (the
Harper equation) or the triangular lattice. We also show that the triangular universality class
describes the quantum Ising spin chain in a quasiperiodic, transverse magnetic field.

In section 2, we review our decimation scheme as applied to the NN TBEs. Section 3
summarizes our previous results in the case where the two NNN couplings are equal, and in
section 4 we give the new results on the phase diagram of the anisotropic complex model.
In section 5, we study the relationship of this problem with the quantum Ising chain in a
quasiperiodic transverse field. We summarize our results in section 6.

2. The decimation scheme

We will use a decimation approach to describe the scaling properties of the wave function in
the E and C phases and the fluctuations of the wave functions in the L phase, for a specific
value of energy. In our studies below, we will focus on the quantum state with minimum
energyEmin. In the above TBE with no mobility edges, all of the quantum states exhibit
qualitatively the same features—that is, they are either E, L or C. They however do differ
in the details of the scaling properties.

In addition to fixing the quantum state, one has to also fix the phase factorφ to a
critical value in equation (2) so that the wave function remains finite asymptotically. The
nondivergent wave functions are needed to determine the scaling properties as has been
discussed previously [6, 7, 5].

The key idea of the decimation scheme is to connect the wave functionψk at an arbitrary
site k with two neighbouring Fibonacci sitesk + Fn+1 andk + Fn whereFn+1 = Fn + Fn−1

[7, 8]:

fn(k)ψ(k + Fn+1) = ψ(k + Fn) + en(k)ψ(k). (3)

The way in which the decimation functionsfn anden are placed in the decimation equation
is somewhat arbitrary but here we choose the form which causes the asymptotic limits of the
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decimation functionsen andfn asn → ∞ to be bounded in all three phases. The additive
property of the Fibonacci numbers provides exact recursion relations for the decimation
functionsen andfn [3, 7, 8]:

en+1(k) = − Aen(k)

1 + Afn(k)
(4)

fn+1(k) = fn−1(k + Fn)fn(k + Fn)

1 + Afn(k)
(5)

A = en−1(k + Fn) + fn−1(k + Fn)en(k + Fn).

For fixed k, the above coupled equations for the decimation functions define a RG flow
which asymptotically (n → ∞) converges on an attractor. The C phase is distinguished
from the E phase by the existence of nontrivial limiting behaviour. With anisotropic NNN
coupling, the attractor is ap-cycle in all three phases forE = Emin [9]. The asymptotic
p-cycle for en(0) andfn(0) determines the universal scaling ratios

ζj = lim
n→∞ ψ(Fpn+j )/ψ(0) j = 0, . . . , p − 1. (6)

whose absolute values are equal to unity in the E phase and less than unity in the C phase [9].
In order to study the scaling properties of the L phase [3], we write

ψk = e−γ |k|ηk (7)

whereγ is the Lyapunov exponent which vanishes in the E and C phases and is positive in
the L phase. Knowing the analytic formula for the Lyapunov exponent, it is easy to write a
TBE for ηk, resembling equation (2). The decimation can be carried out for this modified
TBE in the same way as for the original equation. In particular, there will be a scaling ratio
ζ characterizing the fluctuations in the exponentially decaying wave function.

3. Isotropic NNN couplings: a review of the previous work

We briefly review the analysis of the TBE with NNN couplings in the isotropic limit where
tab = tab̄ [4, 5, 3]. Although the wave functionψk in general is a complex function of the
lattice indexk, ψk can be taken to be real in this case. For 2tab < ta, the model belongs
to the universality class of the Harper model with both E (tb < ta) and L (tb > ta) phases
and a critical point atta = tb where the system has the full square symmetry. On the other
hand, for 2tab > ta the model is found to belong to a new universality class where there is
no E phase but instead the C phase exists over a finite parameter intervaltb 6 2tab. For
tb > 2tab the states are exponentially localized. The E phase and the C phase are separated
by a bicritical line 2tab = ta.

Detailed decimation studies [5] show that the wave functions within the fat C phase
above the bicritical line are self-similar (at the band edges) only at certain special values
of the parameters. These special points correspond to universal limit cycles of the
renormalization. However, for generic parameter values, the fractal characteristics of the
critical wave functions do not exhibit self-similarity and are conjectured to be described by
a strange attractor of the renormalization flow.

The renormalization analysis of the L phase shows that the fluctuations of the wave
functions in the L phase mimic the behaviour in the C phase [3]. The L phase of the Harper
universality class is described by a renormalization fixed point of the strong-coupling limit
tb/ta → ∞ while the L phase above the bicritical line is described by a strange attractor of
the associated renormalization [3].
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4. Anisotropic NNN couplings

Here we first summarize our results for the phase diagram in the case of anisotropic NNN
couplingstab 6= tab̄. This will be followed by various details of our analysis which include
the duality transformations [2] as well as the renormalization analysis.

4.1. A summary of the phase diagram

In addition to distinguishing the phases as E, L and C, we also characterize them in terms
of their universality classes defined by the decimation scaling ratioζ , as follows.

(1) As soon asα andβ differ, α−β is an irrelevant parameter and the phase diagram in
terms of the parameters(α + β)/2 andλ is the same as the one obtained by settingβ = 0
(provided thatα > β).

(2) For(α+β)/2 < 1, the asymptotic scaling properties of the wave functions are given
by the universality classes of the NN square lattice, described by the Harper equation. The
wave functions are in general complex but the corresponding scaling factors are real taking
the same values as for(α + β)/2 = 0.

(3) For (α + β)/2 > 1, the universality classes are the same as for the Harper equation
up to a complex phase factor inζ .

(4) Along the line(α +β)/2 = 1, the scaling properties belong to the universality class
of the triangular lattice (up to a complex phase).

Table 1 lists the universal scaling ratios for the C and L phases in various universality
classes. In the case of the square lattice, there exist two universal scalings which characterize
the C and L phases. However, in the case of the triangular lattice, there are three sets of
universal ratios describing the critical properties along the lineta = (tab + tab̄) > tb, at the
point ta = tb = (tab + tab̄) and along the supercritical (localized) lineta = (tab + tab̄) < tb.

Table 1. The absolute value of the universal scaling ratios for various universality classes at the
minimum band edge.φc = 1/2 for all other parts of the parameter space except along the line
AC whereφc varies as a function ofλ.

Universality class and phase ζ

Harper: C phase 0.211
Harper: L phase 0.176
Asymmetric triangular: C phase 0.825, 0.908, 0.836
Symmetric triangular: C phase 0.238, 0.303, 0.291
Triangular: L phase 0.267, 0.311, 0.121

In the following, we take various limits to obtain a better understanding of the numerical
observations on the phase diagram.

4.2. The limitα → ∞, β/α → 0

In order to explain the observation (3) of the previous section and in particular the re-
entrant E phase, it is useful to consider the limittab/ta → ∞, tab̄/tab → 0. Rearranging
the resulting TBE, it can be written as

Ck+1 + Ck−1 + 2tb

tab

cos[2π(kσ + φ)]Ck = E

tab

Ck (8)
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whereCk is related toψk via

Ck = exp(i 2πφk) exp(iπσk2)ψk. (9)

The appearance of such a transformation is not surprising as the limit corresponds to an
oblique lattice which is topologically similar to the square lattice.

The presence of the phase factor in equation (9) makes the RG analysis of the re-entrant
E phase more complicated than that of the Harper-type E phase. The re-entrant E phase is
described by a complex 6-cycle with complex scaling ratios. This is in contrast to the Harper
E phase which is described by a real fixed point. Furthermore, the latter depends neither on
the phaseφ nor on the lattice indexk and can be easily solved from a fixed-point equation:
fn(k) ≡ σ and en(k) ≡ −σ 2 resulting inζ = 1. In the complex E phase, complications
arise from the fact that the decimation functions do depend both onφ and k. But the
absolute value of a decimation function has the same constant value as in the real case.
The above equation shows that the scaling factorsζj exist only for special (i.e. rational or
those related to the golden mean) values of the phaseφ. The relationFnσ = Fn−1 − (−σ)n

implies that

σF 2
n = Fn−1Fn + (−1)n−1 + σ 2n

1 + 2σ
. (10)

From this and equation (9) it follows that forφ = 0, 1/2

ζj = ± exp[±iπ/(1 + 2σ)]. (11)

Taking advantage of the above limiting solution, it is possible to derive an explicit
expression for the 6-cycle. Substituting equation (9) into the decimation equation (3), we
obtain

en(k) = eh
n(k) exp(−i 2πφFn) exp[−iπσ(F 2

n + 2kFn)]

fn(k) = f h
n (k) exp(i 2πφFn−1) exp[iπσ(F 2

n+1 − F 2
n + 2kFn−1)]

(12)

whereeh
n and f h

n are the decimation functions corresponding to the Harper equation (8).
From these equations we see thaten and fn are functions of the fractional part ofkσ ,
denoted by{kσ }, only. Therefore, we can write the decimation functions in terms of the
renormalized variablex = (−σ)−n{kσ } [7]. For simplicity, let us assume thatφ = 0, 1/2.
Applying the relation (10) and the fact that

(−σ)nFn = (−1)n − σ 2n

1 + 2σ
(13)

we obtain six different limiting function pairs of the form

e∗(x) = ±σ 2 exp[±iπ(2x − 1)/(1 + 2σ)]

f ∗(x) = ±σ exp[±iπ 2(σx + 1)/(1 + 2σ)]
(14)

asn tends to infinity. These pairs form a 6-cycle of the recursion (4), (5), written in terms
of the continuous variablex [7]:

en+1(x) = − Aen(−σx)

1 + Afn(−σx)
(15)

fn+1(x) = fn−1(σ
2x + σ)fn(−σx − 1)

1 + Afn(−σx)
(16)

A = en−1(σ
2x + σ) + fn−1(σ

2x + σ)en(−σx − 1).

For the above 6-cycle, 1+ Af ∗(−σx) ≡ σ .
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Therefore, the characteristic feature of the re-entrant E phase is the fact that the
decimation functions depend explicitly onx. These functions are complex and consequently
the universal scaling ratio has both real and imaginary parts but the absolute value ofζ

is unity. This is unlike the Harper E phase where the real universal functions are site
independent and are given in terms of the powers of the golden mean.

In fact, in the analysis above, the only thing which referred to the E phase was the
replacement of the functionseh

n(k) and f h
n (k) by their asymptotic limits−σ 2 and σ ,

respectively. Equally well, we could relate the scaling properties in the C and L phase
of this limit to those of the Harper equation.

The fact that the RG fixed points of the ‘oblique’ limit attract the RG flow also in other
parts of the region(α + β)/2 > 1 is a nontrivial numerical observation which we cannot
explain analytically.

4.3. The line ACL:ta = tab, tab̄ = 0

Without loss of generality we setta = tab = 1. Rearranging the phase factors, the complex
TBE can be written as the following TBE with real coefficients:

E

2
ψ̄k = cos

[
π

(
σk + φ + σ

2

)]
ψ̄k+1 + cos

[
π

(
σk + φ − σ

2

)]
ψ̄k−1

+ λ cos[2π(σk + φ)]ψ̄k (17)

where

ψ̄k = exp[iπ(k2σ/2 + kφ)]ψk. (18)

Note that above TBE describes the triangular lattice [10]. We next show that the scaling
properties for the triangular lattice are different from those of the square lattice. It turns out
that the line AC is critical and, except for the point C on this line, the line is described by
a unique fixed point.

We first consider the regime to the left of the point C whereta = tab > tb. The RG
analysis in this case shows thattb is an irrelevant parameter and hence the scaling properties
along this line are described by a unique fixed point. By settingtb = 0 (ta = tab = 1) the
TBE in this case can be written as

(1 + exp[i 2π((k + 1/2)σ + φ)])ψk+1 + (1 + exp[−i 2π((k − 1/2)σ + φ)])ψk−1 = Eψk.

(19)

Using the Fourier transformation

ψk =
∑

gl exp(i 2πσ lk) (20)

the above TBE can be written as

ḡl+1 + ḡl−1 + 2 cos(2πσ l)ḡl = Eḡl (21)

where

ḡl = exp[−iπ(σ l2 − 2lφ)]gl. (22)

This is identical to the Harper equation at its self-dual point. The above transformation not
only illustrates the fact that the point A is critical but it also shows that the scaling ratios
at that point are linear combinations (weighted over a pseudo-random phase factor) of an
infinite set of scaling ratios of the one-dimensional lattice points and hence are different
from that of the Harper critical point. However, this analysis shows that the two systems
are related in a complicated way and have the same spectrum.
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Our RG analysis shows that at the point C whereta = tab = tb, the scaling properties
are different from those of the rest of the line AC as shown in table 1.

For the case whereta = tab < tb, we follow the method described in our previous paper
to study the L phase [3]. Again, the scaling ratios along the line CL in the L phase are
different from the scaling ratio describing the L phase of the Harper universality class.

5. The relationship with the quantum Ising model

It turns out that the TBE in the triangular-lattice limit also describes another problem,
namely the quantum Ising model (QIM) in a transverse fieldhk:

H = −
∑

σx
k σ x

k+1 − hkσ
z
k . (23)

Using the methods of Liebet al [11], the eigenvalue equation for the spin problem can be
written in a TBE form, which forhk = λ cos[π(kσ + φ)] is

Eψk = cos[π(kσ + σ + φ)]ψk+1 + cos[π(kσ + φ)]ψk−1 + λ

2
cos[2π(kσ + φ)]ψk. (24)

HereE = −λ/2 + (Ē2/4 − 1)/λ, whereĒ is the energy of the Ising model (23).
It is rather interesting to note the similarities between these two seemingly unrelated

problems. Both are described by a NN TBE where the diagonal as well as off-diagonal
terms are modulating: the periodicity of the diagonal term is twice the periodicity of the
off-diagonal term. The only difference between the models is in the relativeσ -dependent
phase differences between the diagonal and off-diagonal terms.

The QIM was recently studied forσ = (
√

5−1)/2 [12]. Forλ 6 2, the model exhibited
critical states which became exponentially localized forλ > 2. This localization transition
was accompanied by the magnetic transition to long-range order driven by a conformally
invariant quantum state. Very recent decimation studies [7] confirmed this phase diagram of
the model and showed that the subconformal regime was described by a unique fixed point
of the renormalization flow. However, at the onset of localization, the renormalization flow
was attracted by a different fixed point resulting in a different universality class.

Comparison of the RG analysis for the QIM and the triangular-lattice model along
the line ACL shows that in the subconformal and the strong-coupling phases of the Ising
model the RG flow approaches asymptotically the same 3-cycle as for the asymmetric and
strong-coupling triangular lattices for both the upper and the lower band edges (maximum
and minimum energy). At the conformally invariant point of the QIM, corresponding to
the onset of localization, the universal characteristics of the triangular-lattice band edges
are the same as those of the upper band edge of the QIM. However, the lower band edge
of the QIM has zero energy and the corresponding state is believed to be conformally
invariant. Unlike the upper-band-edge 3-cycle, the renormalization flow for the decimation
functions atĒ = 0 converges to a period-1 fixed point. In addition, the wave function at the
conformal point is asymmetrical, vanishing on one side of main peak [7]. The ‘conformal’
renormalization fixed point of the QIM does not map to any quantum state of the triangular
model. However, it turns out that the conformal fixed point is identical to the strong-
coupling fixed point of the Harper equation describing the self-similar fluctuations in the
localized states [3]. This interesting result is due to the fact that the TBE describing the
conformal state of the Ising model is related to the TBE describing the strong-coupling limit
of the Harper equation. Therefore, although the Ising model is described almost everywhere
by the triangular universality class, the onset to the long-range order corresponds to the
square-lattice universality class.
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6. Conclusions

In summary, we have shown that almost all of the four-dimensional phase diagram of
the generalized Harper equation can be described by two universality classes, namely the
universality class of the square lattice (the Harper equation) and the universality class of
the triangular lattice. The only exception is the region where the two NNN couplings are
equal and are greater than one half of one of the NN couplings. Furthermore, the triangular
universality class also describes the phase diagram of the QIM with the only exception being
the conformally invariant quantum state characterizing the magnetic transition to long-range
order. The conformal state is described by the strong-coupling limit of the Harper equation.

We have shown that with anisotropic NNN couplings, the renormalization behaviour for
the TBE describing an electron on a square lattice is a lot simpler than in the isotropic case.
Firstly, the renormalization strange set corresponding to the fat C phase in the isotropic
case is replaced by an attracting cycle associated with trivial scaling properties (i.e. the
E phase). Secondly, the bicritical lines of the isotropic case remain critical also when the
NNN couplings are not equal but the renormalization attractor is again simpler (i.e. a cycle).
Thirdly, the fluctuations of the exponentially localized wave functions are described by a
universal fixed point and not by an infinite strange set as in the isotropic case. A novel
and very interesting result of our studies is the fact that the triangular universality class is
sandwiched between two Harper-type phases. Therefore, as one of the parameters is varied,
we have the E–E transition, in addition to the E–L and C–L transitions.
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